19 research outputs found

    Motion Detection and Clustering Using PCA and NN in Color Image Sequence

    Get PDF
    This paper presents a motion detection method with the use of the Principal Component Analysis. This method is able to detect and track moving objects in a sequence of images. The tested sequence is segmented within the meaning of movement. In this paper, the concept of extracting significant information from a large number of data is adopted to provide an effective method for tracking moving objects on the video image. The principal components are different in term of getting significant information, the nature of motion (the nature of information) is responsible of this difference, the algorithm in this paper distinguish the motion nature and choose the appropriate components to give a best segmentation

    Cereal Grain Classification by Optimal Features and Intelligent Classifiers

    Get PDF
    The present paper focused on the classification of cereal grains using different classifiers combined to morphological, colour and wavelet features. The grain types used in this study were Hard Wheat, Tender Wheat and Barley. Different types of features (morphological, colour and wavelet) were extracted from colour images using different approaches. They were applied to different classification methods

    Robust Predictive Control using a GOBF Model for MISO Systems

    Get PDF
    In this paper we develop a new method for robust predictive control for MISO systems represented on the Generalized Orthonormal Basis Functions. Unknown But Bounded Error approaches are used to update the uncertainty domain of the resultant model coefficients. This method uses a worst case strategy solved by a min-max optimization problem taking into account the constraints relative to parameter uncertainties and to measurement signals

    Objects Detection by Singular Value Decomposition Technique in Hybrid Color Space: Application to Football Images

    Get PDF
    In this paper, we present an improvement non-parametric background modeling and foreground segmentation. This method is important; it gives the hand to check many states kept by each background pixel. In other words, generates the historic for each pixel, indeed on certain computer vision applications the background can be dynamic; several intensities were projected on the same pixel. This paper describe a novel approach which integrate both Singular Value Decomposition (SVD) of each image to increase the compactness density distribution and hybrid color space suitable to this case constituted by the three relevant chromatics levels deduced by histogram analysis. In fact the proposed technique presents the efficiency of SVD and color information to subtract background pixels corresponding to shadows pixels. This method has been applied on colour images issued from soccer video. In the other hand to achieve some statistics information about players ongoing of the match (football, handball, volley ball, Rugby...) as well as to refine their strategy coach and leaders need to have a maximum of technical-tactics information. For this reason it is prominent to elaborate an algorithm detecting automatically interests color regions (players) and solve the confusion problem between background and foreground every moment from images sequence

    Enhanced group-based wireless ad-hoc sensor network protocol

    Full text link
    [EN] Communication is the major energy consumption source in wireless ad-hoc sensor networks. Thus, an efficient tradeoff between the energy cost of the communication and network's performance is a key challenge in conceiving a wireless ad-hoc sensor network. In this article, we propose an improved group-based architecture for wireless ad-hoc sensor networks. An optimized group forming procedure and an efficient communication operation are introduced. In order to validate the proposed approach, we suggest a group-based strategy to monitor pharmaceutical drugs during transportation. Real measurements of temperature and vibration were performed to validate the effectiveness of our approach.Khedher, M.; Lloret, J.; Douik, A. (2016). Enhanced group-based wireless ad-hoc sensor network protocol. International Journal of Distributed Sensor Networks. 12(7):1-18. https://doi.org/10.1177/1550147716659427S118127Dargie, W., & Poellabauer, C. (2010). Fundamentals of Wireless Sensor Networks. doi:10.1002/9780470666388Singh, S. P., & Sharma, S. C. (2015). A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia Computer Science, 45, 687-695. doi:10.1016/j.procs.2015.03.133Liao, Y., Qi, H., & Li, W. (2013). Load-Balanced Clustering Algorithm With Distributed Self-Organization for Wireless Sensor Networks. IEEE Sensors Journal, 13(5), 1498-1506. doi:10.1109/jsen.2012.2227704Peng, I.-H., & Chen, Y.-W. (2013). Energy consumption bounds analysis and its applications for grid based wireless sensor networks. Journal of Network and Computer Applications, 36(1), 444-451. doi:10.1016/j.jnca.2012.04.014Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Lloret, J., García, M., Boronat, F., & Tomás, J. (s. f.). MANET Protocols Performance in Group-based Networks. IFIP International Federation for Information Processing, 161-172. doi:10.1007/978-0-387-84839-6_13Lloret, J., Garcia, M., & Tomas, J. (s. f.). Improving Mobile and Ad-hoc Networks performance using Group-Based Topologies. Wireless Sensor and Actor Networks II, 209-220. doi:10.1007/978-0-387-09441-0_18Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438-3450. doi:10.1016/j.comcom.2008.05.030Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Shaikh, R. A., Jameel, H., d’ Auriol, B. J., Heejo Lee, Sungyoung Lee, & Young-Jae Song. (2009). Group-Based Trust Management Scheme for Clustered Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(11), 1698-1712. doi:10.1109/tpds.2008.258Chen, Y.-S., Hsu, C.-S., & Lee, H.-K. (2014). An Enhanced Group Mobility Protocol for 6LoWPAN-Based Wireless Body Area Networks. IEEE Sensors Journal, 14(3), 797-807. doi:10.1109/jsen.2013.2287895Yao-Chung Chang, Zhi-Sheng Lin, & Jiann-Liang Chen. (2006). Cluster based self-organization management protocols for wireless sensor networks. IEEE Transactions on Consumer Electronics, 52(1), 75-80. doi:10.1109/tce.2006.1605028Fazio, P., De Rango, F., Sottile, C., & Santamaria, A. F. (2013). Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree. International Journal of Distributed Sensor Networks, 9(11), 598675. doi:10.1155/2013/598675Saravanan, M., & Madheswaran, M. (2014). A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network. Mathematical Problems in Engineering, 2014, 1-8. doi:10.1155/2014/71342

    Face recognition using fractional coefficients and discrete cosine transform tool

    Get PDF
    Face recognition is a computer vision application based on biometric information for automatic person identification or verification from image sequence or a video frame. In this context DCT is the easy technique to determine significant parameters. Until now the main object is selection of the coefficients to obtain the best recognition. Many techniques rely on premasking windows to discard the high and low coefficients to enhance performance. However, the problem resides in the shape and size of premask. To improve discriminator ability in discrete cosine transform domain, we used fractional coefficients of the transformed images with discrete cosine transform to limit the coefficients area for a better performance system. Then from the selected bands, we use the discrimination power analysis to search for the coefficients having the highest power to discriminate different classes from each other. Feature selection algorithm is a key issue in all pattern recognition system, in fact this algorithm is utilized to define features vector among several ones, where these features are selected according a specified discrimination criterion. Many classifiers are used to evaluate our approach like, support vector machine and random forests. The proposed approach is validated with Yale and ORL Face databases. Experimental results prove the sufficiency of this method in face and facial expression recognition field
    corecore